Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: covidwho-2245895

RESUMEN

Although progressive wasting and weakness of respiratory muscles are the prominent hallmarks of Duchenne muscular dystrophy (DMD) and long-COVID (also referred as the post-acute sequelae of COVID-19 syndrome); however, the underlying mechanism(s) leading to respiratory failure in both conditions remain unclear. We put together the latest relevant literature to further understand the plausible mechanism(s) behind diaphragm malfunctioning in COVID-19 and DMD conditions. Previously, we have shown the role of matrix metalloproteinase-9 (MMP9) in skeletal muscle fibrosis via a substantial increase in the levels of tumor necrosis factor-α (TNF-α) employing a DMD mouse model that was crossed-bred with MMP9-knockout (MMP9-KO or MMP9-/-) strain. Interestingly, recent observations from clinical studies show a robust increase in neopterin (NPT) levels during COVID-19 which is often observed in patients having DMD. What seems to be common in both (DMD and COVID-19) is the involvement of neopterin (NPT). We know that NPT is generated by activated white blood cells (WBCs) especially the M1 macrophages in response to inducible nitric oxide synthase (iNOS), tetrahydrobiopterin (BH4), and tetrahydrofolate (FH4) pathways, i.e., folate one-carbon metabolism (FOCM) in conjunction with epigenetics underpinning as an immune surveillance protection. Studies from our laboratory, and others researching DMD and the genetically engineered humanized (hACE2) mice that were administered with the spike protein (SP) of SARS-CoV-2 revealed an increase in the levels of NPT, TNF-α, HDAC, IL-1ß, CD147, and MMP9 in the lung tissue of the animals that were subsequently accompanied by fibrosis of the diaphragm depicting a decreased oscillation phenotype. Therefore, it is of interest to understand how regulatory processes such as epigenetics involvement affect DNMT, HDAC, MTHFS, and iNOS that help generate NPT in the long-COVID patients.


Asunto(s)
COVID-19 , Distrofia Muscular de Duchenne , Animales , Humanos , Ratones , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos mdx , Factor de Necrosis Tumoral alfa/metabolismo , Síndrome Post Agudo de COVID-19 , Neopterin/metabolismo , COVID-19/patología , SARS-CoV-2 , Distrofia Muscular de Duchenne/genética , Fibrosis , Músculo Esquelético/metabolismo , Modelos Animales de Enfermedad
2.
Mol Cell Biochem ; 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: covidwho-2245263

RESUMEN

The ongoing pandemic (also known as coronavirus disease-19; COVID-19) by a constantly emerging viral agent commonly referred as the severe acute respiratory syndrome corona virus 2 or SARS-CoV-2 has revealed unique pathological findings from infected human beings, and the postmortem observations. The list of disease symptoms, and postmortem observations is too long to mention; however, SARS-CoV-2 has brought with it a whole new clinical syndrome in "long haulers" including dyspnea, chest pain, tachycardia, brain fog, exercise intolerance, and extreme fatigue. We opine that further improvement in delivering effective treatment, and preventive strategies would be benefited from validated animal disease models. In this context, we designed a study, and show that a genetically engineered mouse expressing the human angiotensin converting enzyme 2; ACE-2 (the receptor used by SARS-CoV-2 agent to enter host cells) represents an excellent investigative resource in simulating important clinical features of the COVID-19. The ACE-2 mouse model (which is susceptible to SARS-CoV-2) when administered with a recombinant SARS-CoV-2 spike protein (SP) intranasally exhibited a profound cytokine storm capable of altering the physiological parameters including significant changes in cardiac function along with multi-organ damage that was further confirmed via histological findings. More importantly, visceral organs from SP treated mice revealed thrombotic blood clots as seen during postmortem examination. Thus, the ACE-2 engineered mouse appears to be a suitable model for studying intimate viral pathogenesis thus paving the way for identification, and characterization of appropriate prophylactics as well as therapeutics for COVID-19 management.

3.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology ; 36(Suppl 1), 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1981147

RESUMEN

Although blood‐heart‐barrier (BHB) leakage is the hallmark of congestive (cardio‐pulmonary) heart failure (CHF), the primary cause of death in elderly, and during viral myocarditis resulting from the novel coronavirus such as the severe acute respiratory syndrome novel corona virus 2 (SARS‐CoV‐2) known as COVI‐19, the mechanism is unclear. The goal of this project is to determine the mechanism BHB in CHF. Endocardial endothelium (EE) is the BHB against leakage of blood from endocardium to the interstitium;however, this BHB is broken during CHF. Previous studies from our laboratory, and others have shown a robust activation of matrix metalloproteinase‐9 (MMP‐9) during CHF. MMP‐9 degrades connexins leading to EE dysfunction. We demonstrated juxtacrine coupling of EE with myocyte, and mitochondria (Mito) but how it works still remains at large. To test whether activation of MMP‐9 causes EE barrier dysfunction, we hypothesized that if that were the case then treatment with hydroxychloroquine (HCQ) could, in fact, inhibit MMP‐9, and thus preserve the EE barrier/juxtacrine signaling, and synchronous endothelial‐myocyte coupling. To determine this, CHF was created by aorta‐vena cava fistula (AVF) employing the mouse as a model system. The sham, and AVF mice were treated with HCQ. Cardiac hypertrophy, tissue remodeling‐induced mitochondrial‐myocyte, and endothelial‐myocyte contractions were measured. Microvascular leakage was measured using FITC‐albumin conjugate. The cardiac function was measured by echocardiography (Echo). Results suggest that MMP‐9 activation, endocardial endothelial leakage, endothelial‐myocyte (E‐M) uncoupling, dyssynchronous mitochondrial fusion‐fission (Mfn2/Drp1 ratio) and mito‐myocyte uncoupling in AVF heart failure were found to be rampant however, treatment with HCQ successfully mitigated some of the deleterious cardiac alterations during CHF. The findings have direct relevance to the gamut of cardiac manifestations, and the resultant phenotypes arising from the ongoing complications of COVID‐19 in human subjects.

4.
Biochem Biophys Res Commun ; 620: 180-187, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1894809

RESUMEN

Diabetes mellitus (DM), hypertension, and cardiovascular diseases (CVDs) are the leading chronic comorbidities that enhance the severity and mortality of COVID-19 cases. However, SARS-CoV-2 mediated deregulation of diabetes pathophysiology and comorbidity that links the skeletal bone loss remain unclear. We used both streptozocin-induced type 2 diabetes (T2DM) mouse and hACE2 transgenic mouse to enable SARS-CoV-2-receptor binding domain (RBD) mediated abnormal glucose metabolism and bone loss phenotype in mice. The data demonstrate that SARS-CoV-2-RBD treatment in pre-existing diabetes conditions in hACE2 (T2DM + RBD) mice results in the aggravated osteoblast inflammation and downregulation of Glucose transporter 4 (Glut4) expression via upregulation of miR-294-3p expression. The data also found increased fasting blood glucose and reduced insulin sensitivity in the T2DM + RBD condition compared to the T2DM condition. Femoral trabecular bone mass loss and bone mechanical quality were further reduced in T2DM + RBD mice. Mechanistically, silencing of miR-294 function improved Glut4 expression, glucose metabolism, and bone formation in T2DM + RBD + anti-miR-294 mice. These data uncover the previously undefined role of SARS-CoV-2-RBD treatment mediated complex pathological symptoms of diabetic COVID-19 mice with abnormal bone metabolism via a miRNA-294/Glut4 axis. Therefore, this work would provide a better understanding of the interplay between diabetes and SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , MicroARNs , Animales , COVID-19/complicaciones , Diabetes Mellitus Tipo 2/genética , Glucosa/metabolismo , Ratones , MicroARNs/genética , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
5.
Medicina (Kaunas) ; 58(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1633145

RESUMEN

Impaired folate-mediated one-carbon metabolism (FOCM) is associated with many pathologies and developmental abnormalities. FOCM is a metabolic network of interdependent biosynthetic pathways that is known to be compartmentalized in the cytoplasm, mitochondria and nucleus. Currently, the biochemical mechanisms and causal metabolic pathways responsible for the initiation and/or progression of folate-associated pathologies have yet to be fully established. This review specifically examines the role of impaired FOCM in type 2 diabetes mellitus, Alzheimer's disease and the emerging Long COVID/post-acute sequelae of SARS-CoV-2 (PASC). Importantly, elevated homocysteine may be considered a biomarker for impaired FOCM, which is known to result in increased oxidative-redox stress. Therefore, the incorporation of hyperhomocysteinemia will be discussed in relation to impaired FOCM in each of the previously listed clinical diseases. This review is intended to fill gaps in knowledge associated with these clinical diseases and impaired FOCM. Additionally, some of the therapeutics will be discussed at this early time point in studying impaired FOCM in each of the above clinical disease states. It is hoped that this review will allow the reader to better understand the role of FOCM in the development and treatment of clinical disease states that may be associated with impaired FOCM and how to restore a more normal functional role for FOCM through improved nutrition and/or restoring the essential water-soluble B vitamins through oral supplementation.


Asunto(s)
Enfermedad de Alzheimer , COVID-19 , Diabetes Mellitus Tipo 2 , COVID-19/complicaciones , Carbono , Ácido Fólico , Humanos , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
6.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1580691

RESUMEN

Although blood-heart-barrier (BHB) leakage is the hallmark of congestive (cardio-pulmonary) heart failure (CHF), the primary cause of death in elderly, and during viral myocarditis resulting from the novel coronavirus variants such as the severe acute respiratory syndrome novel corona virus 2 (SARS-CoV-2) known as COVID-19, the mechanism is unclear. The goal of this project is to determine the mechanism of the BHB in CHF. Endocardial endothelium (EE) is the BHB against leakage of blood from endocardium to the interstitium; however, this BHB is broken during CHF. Previous studies from our laboratory, and others have shown a robust activation of matrix metalloproteinase-9 (MMP-9) during CHF. MMP-9 degrades the connexins leading to EE dysfunction. We demonstrated juxtacrine coupling of EE with myocyte and mitochondria (Mito) but how it works still remains at large. To test whether activation of MMP-9 causes EE barrier dysfunction, we hypothesized that if that were the case then treatment with hydroxychloroquine (HCQ) could, in fact, inhibit MMP-9, and thus preserve the EE barrier/juxtacrine signaling, and synchronous endothelial-myocyte coupling. To determine this, CHF was created by aorta-vena cava fistula (AVF) employing the mouse as a model system. The sham, and AVF mice were treated with HCQ. Cardiac hypertrophy, tissue remodeling-induced mitochondrial-myocyte, and endothelial-myocyte contractions were measured. Microvascular leakage was measured using FITC-albumin conjugate. The cardiac function was measured by echocardiography (Echo). Results suggest that MMP-9 activation, endocardial endothelial leakage, endothelial-myocyte (E-M) uncoupling, dyssynchronous mitochondrial fusion-fission (Mfn2/Drp1 ratio), and mito-myocyte uncoupling in the AVF heart failure were found to be rampant; however, treatment with HCQ successfully mitigated some of the deleterious cardiac alterations during CHF. The findings have direct relevance to the gamut of cardiac manifestations, and the resultant phenotypes arising from the ongoing complications of COVID-19 in human subjects.


Asunto(s)
COVID-19/complicaciones , Insuficiencia Cardíaca/metabolismo , Corazón/virología , Animales , Sangre/virología , Fenómenos Fisiológicos Sanguíneos/inmunología , COVID-19/fisiopatología , Cardiomegalia/metabolismo , Enfermedades Cardiovasculares/metabolismo , Fenómenos Fisiológicos Cardiovasculares/inmunología , Modelos Animales de Enfermedad , Endotelio/metabolismo , Corazón/fisiopatología , Insuficiencia Cardíaca/virología , Hidroxicloroquina/farmacología , Masculino , Metaloproteinasa 9 de la Matriz/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Musculares/metabolismo , Miocardio/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Remodelación Ventricular/fisiología
7.
Mol Cell Biochem ; 476(4): 1891-1895, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-1044487

RESUMEN

Corona virus disease-19 (covid-19) is caused by a coronavirus that is also known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and is generally characterized by fever, respiratory inflammation, and multi-organ failure in susceptible hosts. One of the first things during inflammation is the response by acute phase proteins coupled with coagulation. The angiotensinogen (a substrate for hypertension) is one such acute phase protein and goes on to explain an association of covid-19 with that of angiotensin-converting enzyme-2 (ACE2, a metallopeptidase). Therefore, it is advisable to administer, and test the efficacy of specific blocker(s) of angiotensinogen such as siRNAs or antibodies to covid-19 subjects. Covid-19 activates neutrophils, macrophages, but decreases T-helper cells activity. The metalloproteinases promote the activation of these inflammatory immune cells, therefore; we surmise that doxycycline (a metalloproteinase inhibitor, and a safer antibiotic) would benefit the covid-19 subjects. Along these lines, an anti-acid has also been suggested for mitigation of the covid-19 complications. Interestingly, there are three primary vegetables (celery, carrot, and long-squash) which are alkaline in their pH-range as compared to many others. Hence, treatment with fresh juice (without any preservative) from these vegies or the antioxidants derived from purple carrot and cabbage together with appropriate anti-coagulants may also help prevent or lessen the detrimental effects of the covid-19 pathological outcomes. These suggested remedies might be included in the list of putative interventions that are currently being investigated towards mitigating the multi-organ damage by Covid-19 during the ongoing pandemic.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Insuficiencia Cardíaca/tratamiento farmacológico , Inflamación/tratamiento farmacológico , ARN Interferente Pequeño/uso terapéutico , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/genética , Angiotensinógeno/antagonistas & inhibidores , Angiotensinógeno/genética , COVID-19/genética , COVID-19/fisiopatología , COVID-19/virología , Corazón/efectos de los fármacos , Corazón/fisiopatología , Corazón/virología , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/virología , Humanos , Inflamación/complicaciones , Inflamación/genética , Inflamación/virología , Neutrófilos/virología , Pandemias , SARS-CoV-2/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA